CCSS, Prioritized Mathematics CCCs, and Essential Understandings

All materials in this resource have been approved for public distribution with all necessary permissions. Selected excerpts are accompanied by annotated links to related media freely available online at the time of the publication of this document.

National Center and State Collaborative
The National Center and State Collaborative (NCSC) is applying the lessons learned from the past decade of research on alternate assessments based on alternate achievement standards (AA-AAS) to develop a multi-state comprehensive assessment system for students with significant cognitive disabilities. The project draws on a strong research base to develop an AA-AAS that is built from the ground up on powerful validity arguments linked to clear learning outcomes and defensible assessment results, to complement the work of the Race to the Top Common State Assessment Program (RTTA) consortia.

Our long-term goal is to ensure that students with significant cognitive disabilities achieve increasingly higher academic outcomes and leave high school ready for postsecondary options. A well-designed summative assessment alone is insufficient to achieve that goal. Thus, NCSC is developing a full system intended to support educators, which includes formative assessment tools and strategies, professional development on appropriate interim uses of data for progress monitoring, and management systems to ease the burdens of administration and documentation. All partners share a commitment to the research-to-practice focus of the project and the development of a comprehensive model of curriculum, instruction, assessment, and supportive professional development. These supports will improve the alignment of the entire system and strengthen the validity of inferences of the system of assessments.

The contents of this lesson were developed as part of the National
 Center and State Collaborative under a grant from the Department of Education (PR/Award \#: H373X100002, Project Officer, Susan.Weigert@Ed.gov). However, the contents do not necessarily represent the policy of the U.S. Department of Education and no assumption of endorsement by the Federal government should be made.

The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation.

These materials and documents were developed under the National Center and State Collaborative (NCSC) General Supervision Enhancement Grant and are consistent with its goals and foundations. Any changes to these materials are to be consistent with their intended purpose and use as defined by NCSC.

This document is available in alternative formats upon request.

ncsc

National Center and State Collaborative
NCSC is a collaborative of 14 states and five organizations.
The states include (shown in blue on map): Arizona, Connecticut, District of Columbia, Florida, Georgia, Indiana, Louisiana, Pacific Assessment Consortium (PAC-6) ${ }^{1}$, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, and Wyoming.

Tier II states are partners in curriculum, instruction, and professional development implementation but are not part of the assessment development work. They are (shown in orange on map): Arkansas, California, Delaware, Idaho, Maine, Maryland, Montana, New Mexico, New York, Oregon, and U.S. Virgin Islands.

*Core partner states are blue in color and Tier II states are orange in color.

[^0]
nCSC

The five partner organizations include: The National Center on Educational Outcomes (NCEO) at the University of Minnesota, The National Center for the Improvement of Educational Assessment (Center for Assessment), The University of North Carolina at Charlotte, The University of Kentucky, and edCount, LLC.

NATIONAL
CENTERON EDUCATIONAL
OUTCOMES

UNIVERSITY OF KENTUCKY*

National Center and State Collaborative

CCSS, Prioritized Mathematics CCCs, and Essential Understandings

January 2014

Table of Contents

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 3 6
NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 4 9
NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 5 13
NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 6 17
NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 7 22
NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 8 25
NCSC CCSS, Prioritized Mathematics CCCs, and EUs for High School 29

National Center State Collaborative CCSS, Prioritized Mathematics CCCs, and Essential Understandings

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 3

Domain	CcSS	CCC	Essential Understandings

Domain	ccss	CCC	Essential Understandings
Number \& Operations in Base Ten	3.NBT.A. 1 Use place value understanding to round whole numbers to the nearest 10 or 100 .	3.NO.1j3 Use place value to round to the nearest 10 or 100.	Identify ones or tens in bundled sets - Similar/different with concrete representations (i.e., is this set of manipulatives (8 ones) closer to this set (a ten) or this set (a one)?).
Number \& Operations in Base Ten	3.NBT.A. 2 Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	3.NO.2c1 Solve multi-step addition and subtraction problems up to 100.	Combine (+) or decompose (-) with concrete objects; use counting to get the answers.
Number \& OperationsFractions	3.NF.A. 1 Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	3.NO.113 Identify the fraction that matches the representation (rectangles and circles; halves, fourths, and thirds, eighths).	Identify part and whole when item is divided. Count the number of the parts selected (3 of the 4 parts; have fraction present but not required to read $3 / 4$).
Number \& OperationsFractions	3.NF.A.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or <, and justify the conclusions, e.g., by using a visual fraction model.	3.SE. 1 g 1 Use $=$, <, or $>$ to compare two fractions with the same numerator or denominator.	Concrete representation of a fractional part of a whole as greater than, less than, equal to another.

Domain	ccss	CCC	Essential Understandings
Measurement \& Data	3.MD.B. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	3.DPS.1g1 Collect data, organize into picture or bar graph.	Organize data into a graph using objects (may have number symbols).
Measurement \& Data	3.MD.C. 6 Measure areas by counting unit squares (square cm, square m , square in, square ft , and improvised units).	3.ME.1d2 Measure area of rectangular figures by counting squares.	Ability to identify the area of a rectangular figure.
Geometry	3.G.A. 2 Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.	3.GM.1i1 Partition rectangles into equal parts with equal area.	Concept of equal parts; Partitioning with concrete objects; Find the rectangle that is the same or match two congruent rectangles.

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 4

Domain	ccss	CCCs	Essential Understandings
Operations \& Algebraic Thinking	4.OA.A. 1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.	4.NO.2d7 Determine how many objects go into each group when given the total number of objects and groups where the number in each group or number of groups is not > 10.	Create an array of objects given a specific number of rows and the total number, place one object in each group/row at a time.
Operations \& Algebraic Thinking	4.OA.A. 2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.	4.PRF.1e3 Solve multiplicative comparisons with an unknown using up to 2-digit numbers with information presented in a graph or word problem (e.g., an orange hat cost $\$ 3$. A purple hat cost 2 times as much. How much does the purple hat cost ? $[3 \times 2=p]$).	Identify visual multiplicative comparisons (e.g., which shows two times as many tiles as this set?).
Operations \& Algebraic Thinking	4.OA.A. 3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	4.NO.2e2 Solve or solve and check one or two step word problems requiring addition, subtraction, or multiplication with answers up to 100 .	Select the representation of manipulatives on a graphic organizer to show addition/multiplication equation; Match to same for representations of equations with equations provided (may be different objects but same configuration).

Domain	ccss	CCCs	Essential Understandings
Number \& Operations in Base Ten	4.NBT.A. 3 Use place value understanding to round multi-digit whole numbers to any place.	4.NO.1j5 Use place value to round to any place (i.e., ones, tens, hundreds, thousands).	Identify ones, tens, hundreds in bundled sets - Similar/different with concrete representations (i.e., is this set of manipulatives (8 tens) closer to this set (a hundred) or this set (a ten)?).
Number \& OperationsFractions	4.NF.A. 1 Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n$ $\times b$) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	4.NO.1m1 Determine equivalent fractions.	Equivalency: what is and what is not equivalent; this may begin with numbers/sets of objects: e.g., 3=3 or two fraction representations that are identical (two pies showing 2/3).
Number \& OperationsFractions	4.NF.A. 2 Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	4.NO.1n2 Compare up to 2 given fractions that have different denominators.	Differentiate between parts and a whole.

Domain	CCSS	CCCs	Essential Understandings

Domain	ccSs	CCCs	Essential Understandings

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 5

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings
	5.G.A.1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x- coordinate, y-axis and y-coordinate).	5.GM.1c3 Use ordered pairs to graph given points.	Identify the x-and y-axis; or concept of intersection.

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 6

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings

Domain	cCSS	CCCs	Essential Understandings
Expressions \& Equations	6.EE.C. 9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ t to represent the relationship between distance and time.	6.ME.2a2 Solve one-step real world measurement problems involving unit rates with ratios of whole numbers when given the unit rate (3 inches of snow falls per hour, how much in 6 hours).	Identify a familiar unit rate.
Expressions \& Equations	6.EE.B. 7 Solve real-world and mathematical problems by writing and solving equations of the form x $+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.	6.NO.2a6 Solve problems or word problems using up to three digit numbers and any of the four operations.	Decompose (\div) with concrete objects; use counting to get the answer.

Domain	CCSS	CCCs	Essential Understandings

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 7

Domain	CcSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings
The Number System	7.NS.A. 2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	7.NO.2i1 Solve multiplication problems with positive/negative numbers.	Create an array of objects for the mathematical equation and match answer symbol (+ or -) following multiplication rules for an equation.
The Number System	7.NS.A. 2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	7.NO.2i2 Solve division problems with positive/negative numbers.	Create an array of objects for the mathematical equation and match answer symbol (+ or -) following division rules for an equation.
Expressions \& Equations	7.EE.B. 4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.	7.PRF. 1 g 2 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.	Record/replace a variable in an equation with a fact from a story on a graphic organizer.
Geometry	7.G.B. 4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	7.ME.2d1 Apply formula to measure area and circumference of circles.	Recognize the area of a circle and the circumference when shown a graphic representation.
Geometry	7.G.B. 6 Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	7.GM.1h2 Find the surface area of three-dimensional figures using nets of rectangles or triangles.	Demonstrate the concept of the surface area of a rectangular prism; Fill rectangular prism.

Domain	ccSS	CCCs	Essential Understandings

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for Grade 8

Domain	CCSS	CCCs	Essential Understandings

Domain	cCSS	CCCs	Essential Understandings
Functions	8.F.B. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	8.PRF.2e2 Identify the rate of change (slope) and initial value (y intercept) from graphs.	Indicate the point on a line that crosses the y -axis.
Functions	8.F.B. 5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	8.PRF.1f2 Describe or select the relationship between the two quantities given a line graph of the situation.	Use a graph to recognize the quantity in two sets, without counting, to determine which is relatively larger.

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings

NCSC CCSS, Prioritized Mathematics CCCs, and EUs for High School

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings

Domain	CCSS	CCCs	Essential Understandings
 Probability: Interpreting Quantitative Data	HSS-ID.A.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	H.DPS.1c1 Use descriptive stats; range, median, mode, mean, outliers/gaps to describe data set.	Identify the highest and lowest value in a data set given a number line and matching symbols (concept of range).

[^0]: ${ }^{1}$ The Pacific Assessment Consortium (including the entities of American Samoa, Commonwealth of the Northern Mariana Islands, Federated States of Micronesia, Guam, Republic of Palau, and Republic of the Marshall Islands) partner with NCSC as one state, led by the University of Guam Center for Excellence in Developmental Disabilities Education, Research, and Service (CEDDERS).

