Office of the
State Superintendent of Education

DC Mathematics Priority Standards

As DC begins the transition to the Common Core State Standards, mathematics content area experts have identified the DC standards that will best help prepare students for the Common Core. These standards are referred to as the "priority standards." The priority standards generally represent one or two essential skill sets for each grade. A summary of each grade's skill sets with sample DC standards are presented below. For the complete list of priority standards see the 2012 DC CAS Math Blueprint.

In conjunction to the priority standards, teachers can also benefit from incorporating the Standards for Mathematical Practice into instruction. The Standards for Mathematical Practice describe varieties of math expertise that students should develop. For your convenience, the Standards for Mathematical Practice are appended to the 2012 DC CAS Math Blueprint.

Third Grade. The essential skills in third grade are multiplication of whole numbers.
Examples of essential multiplication skills include:

- Knowing that division is another way of expressing multiplication (3.NSO-C.15);
- Knowing multiplication facts through 10x10 and related division facts (3. NSO-C.16); and
- Estimating and finding the area and perimeter of a rectangle and triangle using diagrams, models, and grids or by measuring, focusing on the connection to multiplication (3.M.4).

Fourth Grade. The essential skills in fourth grade are fractions and multiplication and division of whole numbers.

Examples of essential fractions skills include:

- Demonstrating an understanding of fractions as parts of unit wholes, as parts of a collection, and as locations on a number line (4.NSO-F.9); and
- Selecting, using, and explain models to relate common fractions and mixed numbers; finding equivalent fractions, mixed numbers, and decimals (4.NSO-F.12).

Examples of essential multiplication and division of whole numbers skills include:

- Demonstrating understanding of and ability to use the conventional algorithms for multiplication of up to a three-digit whole number by a two-digit whole number. Multiplying three-digit whole numbers by twodigit whole numbers accurately and efficiently (4.NSO-C.19);
- Mentally calculating simple products and quotients up to a three-digit number by a one-digit number (4.NSO-C.22); and
- Selecting and using appropriate operations (addition, subtraction, multiplication, and division) to solve problems, including those involving money (4.NSO-C.25).

Fifth Grade. In the fifth grade the focus is on operations with fractions and operations with whole numbers and decimals.

Examples of essential operations with fractions skills include:

- Explain different interpretations of fractions as a ratio of whole numbers, as parts of unit wholes, as parts of a collection, as division of whole numbers by whole numbers, and as locations on the number line. (5.NSO-F.8); and
- Adding and subtracting fractions (including mixed numbers) with like and unlike denominators (of 2, 3, $4,5,6$ and 10), and expressing answers in the simplest form (5.NSO-C.13).

Examples of essential operations with whole numbers and decimal skills include:

- Adding and subtracting positive decimals (5.NSO-C.14); and
- Demonstrating an understanding of and compute (positive integer) powers of 10 (e.g., $10^{\wedge} 2,10^{\wedge} 2$); computing examples as repeated multiplication (5.NSO-C.20).

Sixth Grade. In the sixth grade the focus is on rational numbers.
Examples of rational number skills include:

- Identifying and determining common equivalent fractions, mixed numbers, decimals, and percentages (6.NSO-N.5);
- Accurately and efficiently adding, subtracting, multiplying, and dividing (with multidigit divisors) whole numbers and positive decimals (6.NSO-C.10);
- Understanding multiplication of a negative number by a positive integer as repeated addition (6.NSOC.16); and
- Applying the Order of Operations for expressions involving addition, subtraction, multiplication, and division with grouping symbols (6.NSO-C.17).

Seventh Grade. In the seventh grade the focus is on proportional reasoning.
Examples of essential proportions reasoning skills include:

- Expressing ratios in several ways (e.g., 3 cups to 5 people; 3:5; 3/5); recognizing and finding equivalent ratios (7.NSO-N.8);
- Calculating the percentage increase and decrease of a quantity (7.NSO-C.13);
- Using ratios and proportions in the solution of problems involving unit rates, scale drawings, and reading of maps (7.NSO-C.14); and
- Using linear equations to model and analyze problems involving proportional relationships, focusing on proportional reasoning (7.PRA.8).

Eighth Grade. In the eighth grade, the focus is on linear algebra.
Examples of essential linear algebra skills include:

- Using tables and graphs to represent and compare linear growth patterns. In particular, comparing rates of change and x - and y -intercepts of different linear patterns (8.PRA.1);
- Setting up and solving linear equations and inequalities with one or two variables using algebraic methods and graphs (8.PRA.2);
- Using linear equations to model and analyze problems involving proportional relationships (8.PRA.3); and
- Graphing a linear equation using ordered pairs; identify and represent the graphs of linear functions (8.PRA.9).

Grade 10. In tenth grade, the focus is on linear functions and polynomials.
Examples of essential linear functions skills include:

- Recognizing, describing, and extending patterns governed by a linear, quadratic, or exponential functional relationship or by a simple iterative process (e.g., the Fibonacci sequence) (AI.P.1);
- Determining a line's slope and x - and y -intercepts from its graph or from a linear equation that represents the line (AI.P.5); and
- Solving everyday problems (e.g., mixture, rate, and work problems) that can be modeled using systems of linear equations or inequalities. Applying algebraic and graphical methods to the solution (AI.P.15).

An example of essential polynomial skills includes:

- Adding, subtracting, and multiplying polynomials with emphasis on 1st- and 2nd-degree polynomials (AI.P.8).

2012 DC CAS Math Blueprint

Grade 3

Reporting Category: Number
DC Standards:
3.NSO-N. 1 Exhibit an understanding of the base 10 number system by reading, modeling, and writing whole numbers to at least 10,000; demonstrate an understanding of the values of the digits.
3.NSO-N. 2 Represent, compare, and order numbers to 10,000 using various forms, including expanded notation and written out in words.
3.NSO-N.3 Round whole numbers through 10,000 to the nearest 10, 100,
and 1,000.
3.NSO-N.4 Recognize sets to which a number may belong (odd numbers, even numbers, and multiples of numbers through 10). Identify the numbers

3.NSO-F. 5 Identify and represent fractions (between 0 and 1 with denominators through 10) as parts of unit wholes and parts of a collection.
3.NSO-F. 6 Recognize, name, and use equivalent fractions with denominators $2,3,4$, and 8 ; place these fractions on the number line; compare and order them and relate the number line to a ruler.

Aligned Common Core Standards:

no alignment
no alignment
3.NBT. 1 Use place value understanding to round whole numbers to the nearest
10 or 100.
no alignment
3.NF. 1 Develop understanding of fractions as numbers. Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / \mathrm{b}$. (Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.)
3.NF. 2 Develop understanding of fractions as numbers. Understand a fraction as a number on the number line; represent fractions on a number line diagram. (Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.)
3.NF.2a Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts.
Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. (Grade 3
expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.)
3.NF.2b Represent a fraction a/b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line. (Grade 3
expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.)
3.NF. 3 Develop understanding of fractions as numbers. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. (Grade 3 expectations in this domain are limited to fractions with
3.NSO-F. 7 Know the meaning of $0.75,0.50$, and 0.25 as they relate to money; know that fractions and decimals are two different representations of the same concept.
3.NSO-F. 8 Know that any fraction can be written as a sum of unit fractions.
3.NSO-F. 9 Model and represent a mixed number (with denominator 2, 3, or 4) as a whole number and a fraction.
3.NSO-C. 10 Demonstrate an understanding of and the ability to use conventional algorithms for the addition and subtraction of up to five-digit whole numbers.
3.NSO-C. 11 Add and subtract up to four-digit whole numbers accurately and efficiently.
3.NSO-C. 12 Use concrete objects and visual models to add and subtract common fractions (halves, thirds, fourths, sixths, and eighths) with like denominators.
3.NSO-C. 13 Solve problems involving addition and subtraction of money amounts in decimal notation.
3.NSO-C. 14 Know multiplication is the result of counting the total number of objects in a set of equal groups.
3.NSO-C. 18 Solve division problems in which a multidigit whole number is evenly divided by a one-digit number.

denominators 2, 3, 4, 6, and 8.)

3.NF.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .) 3.NF.3b Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4$, $4 / 6=2 / 3$), Explain why the fractions are equivalent, e.g., by using a visual fraction model. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .)

no alignment

3.NF. 2 Develop understanding of fractions as numbers. Understand a fraction as a number on the number line; represent fractions on a number line diagram. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .)

no alignment

3.NBT. 2 Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. (A range of algorithms may be used.)
3.NBT. 2 Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. (A range of algorithms may be used.)
no alignment

no alignment

3.OA. 1 Represent and solve problems involving multiplication and division. Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.
3.OA. 7 Multiply and divide within 100. Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of one-

	digit numbers.
	3.OA. 2 Represent and solve problems involving multiplication and division. Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.
	3.OA.3 Represent and solve problems involving multiplication and division. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
3.NSO-C. 19 Multiply up to two-digit whole numbers by a one-digit whole number accurately and efficiently.	3.OA. 7 Multiply and divide within 100. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of onedigit numbers.
3.NSO-E. 23 Estimate the sum and difference of two numbers with three digits (sums up to 1,000) and judge reasonableness of estimates.	no alignment
Reporting Category: Number Sense and Operations (Priority Standards) (18\%)	
DC Standards:	Aligned Common Core Standards:
3.NSO-C. 15 Know division (\div) as another way of expressing multiplication, i.e., that division is the inverse of multiplication.	3.OA. 7 Multiply and divide within 100. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of onedigit numbers.
	3.OA.1 Represent and solve problems involving multiplication and division. Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.
	3.OA. 6 Understand properties of multiplication and the relationship between multiplication and division. Understand division as an unknown-factor problem. For example, divide $32 \div 8$ by finding the number that makes 32 when multiplied by 8.
3.NSO-C. 16 Know multiplication facts through 10×10 and related division facts. Use these facts to solve related problems.	3.OA. 7 Multiply and divide within 100. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of onedigit numbers.

3.NSO-C.17 Solve simple problems involving multiplication of multidigit whole numbers by one-digit numbers.
3.NSO-C. 20 Use the commutative (order) and identity properties of addition and multiplication on whole numbers in computations and problem situations.
3.NSO-C.21 Know and apply the special properties of 0 and 1 in multiplication.
3.OA.7 Multiply and divide within 100. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of onedigit numbers.
3.OA.3 Represent and solve problems involving multiplication and division. Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.
3.OA. 5 Understand properties of multiplication and the relationship between multiplication and division. Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$ then $15 \times 2=30$, or by $5 \times 2=10$ then $3 \times 10=30$.
(Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=$ 16 , one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+16=56$.
(Distributive property.) (Students need not use formal terms for these properties.)
no alignment
Reporting Category: Patterns, Relations, and Algebra (17\%)
DC Standards:
3.PRA. 1 Create, describe, and extend symbolic (geometric) patterns and addition and subtraction patterns.
3.PRA. 2 Select appropriate operational and relational symbols to make an expression true.

Aligned Common Core Standards:

3.OA.8 Solve problems involving the four operations, and identify and explain patterns in arithmetic. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).)
3.OA.4 Represent and solve problems involving multiplication and division. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=$ \qquad $\div 3$, $6 \times 6=$?
3.OA. 8 Solve problems involving the four operations, and identify and explain patterns in arithmetic. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing

	for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).)
3.PRA. 3 Determine values of variables in simple equations involving addition, subtraction, or multiplication.	3.OA.4 Represent and solve problems involving multiplication and division. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\ldots \div 3$, $6 \times 6=$?
3.PRA. 4 Know and express the relationships among linear units of measure, i.e., unit conversions.	no alignment
3.PRA. 5 Extend and recognize a linear pattern by its rules.	no alignment
Reporting Category: Geometry (12\%)	
DC Standards:	Aligned Common Core Standards:
3.G.1 Compare and analyze attributes and other features (e.g., number and shape of sides, faces, corners, right angles) of two-dimensional geometric shapes, especially the attributes of triangles (isosceles, equilateral, right) and quadrilaterals (rectangle, square).	no alignment
3.G.2 Describe, model, draw, compare, and classify three-dimensional and two-dimensional shapes, especially circles and polygons (e.g., triangles and quadrilaterals).	3.G.1 Reason with shapes and their attributes. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.
3.G.3 Identify angles as right, acute (less than a right angle), or obtuse (greater than a right angle).	no alignment
3.G.4 Identify and draw lines that are parallel, perpendicular, and intersecting.	no alignment
3.G.5 Identify and draw lines of symmetry in two-dimensional shapes.	no grade 3 alignment
3.G.6 Apply techniques such as reflections (flips), rotations (turns), and translations (slides) for determining if two shapes are congruent.	no alignment
3.G.7 Using ordered pairs of whole numbers and/or letters, locate and identify points on a grid.	no alignment
Reporting Category: Measurement (3\%)	
DC Standards:	Aligned Common Core Standards:

3.M.2 Carry out simple unit conversions within a system of measurement such as hours to minutes and cents to dollars.
3.M. 3 Identify time to the nearest 5 minutes on analog and digital clocks using a.m. and p.m. Compute elapsed time using a clock (e.g., hours and minutes since ...) and using a calendar (e.g., days since ...).
3.MD. 2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). (Excludes compound units such as $\mathrm{cm}^{\wedge} 3$ and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much.")
3.MD. 1 Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.
3.MD.2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). (Excludes compound units such as $\mathrm{cm}^{\wedge} 3$ and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much.")

Reporting Category: Measurement (Priority Standards) (17\%)

DC Standards:
3.M.1 Demonstrate an understanding of such attributes as length, area, and weight; select the appropriate type of unit for measuring each attribute using both the U.S. customary and metric systems.
3.M.4 Estimate and find area and perimeter of a rectangle and triangle using diagrams, models, and grids or by measuring.

Aligned Common Core Standards:

3.MD. 2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). (Excludes compound units such as $\mathrm{cm}^{\wedge} 3$ and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much.")
3.MD. 6 Understand concepts of area and relate area to multiplication and to addition. Measure areas by counting unit squares (square cm , square m , square in, square ft, and improvised units).
3.MD. 5 Understand concepts of area and relate area to multiplication and to addition. Recognize area as an attribute of plane figures and understand concepts of area measurement.
-- a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.
-- b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.

	3.MD. 6 Understand concepts of area and relate area to multiplication and to addition. Measure areas by counting unit squares (square cm , square m , square in, square ft, and improvised units).
	3.MD.7a Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
	3.MD.7b Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
	3.MD. 8 recognize perimeter as an attribute of plane figures and distinguish between linear and area measures. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different area or with the same area and different perimeter.
Reporting Category: Data An	, Statistics, and Probability (22\%)
DC Standards:	Aligned Common Core Standards:
3.DASP. 1 Collect and organize data using observations, measurements,	3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.
	3.MD. 4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.
3.DASP. 2 Construct, identify the main idea, and make predictions from various representations of data sets in the forms of tables, bar graphs (horizontal and vertical forms), pictographs, and tallies.	no alignment
3.DASP. 4 Classify outcomes as certain, likely, unlikely, or impossible.	no alignment
3.DASP. 5 List and count the number of possible combinations of objects from 2 sets.	no alignment

Grade 4

Reporting Category: Number Sense and Operations (7\%)

DC Standards:
4.NSO-N. 1 Exhibit an understanding of the base 10 number system by reading, modeling, and writing whole numbers to at least 100,000; demonstrating an understanding of the values of the digits; and comparing and ordering the numbers.
4.NSO-N. 2 Represent, compare, and order numbers to 100,000 using various forms, including expanded notation.
4.NSO-N. 3 Round whole numbers to 100,000 to the nearest 10, 100, 1,000, 10,000, and 100,000.
4.NSO-N. 4 Recognize sets to which a number may belong (odds, evens, multiples and factors of given numbers, and squares), and use these in the solution of problems.
4.NSO-N. 5 Read and interpret whole numbers and decimals up to two decimal places; relate to money and place-value decomposition.

Aligned Common Core Standards:

4.NBT. 1 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons.
4.NBT. 2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
4.NBT. 2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
no alignment
no alignment
4.NF. 6 Understand decimal notation for fractions, and compare decima fractions. Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram. (Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8,10,12$, and 100.)
4.NF. 7 Understand decimal notation for fractions, and compare decimal fractions. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons comparisons are valid only when two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. (Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8,10,12$, and 100.)
4.MD. 2 Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. Use the four operations to
$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { solve word problems involving distances, intervals of time, liquid volumes, } \\ \text { masses of objects, and money, including problems involving simple fractions } \\ \text { or decimals, and problems that require expressing measurements given in a } \\ \text { larger unit in terms of a smaller unit. Represent measurement quantities } \\ \text { using diagrams such as number line diagrams that feature a measurement } \\ \text { scale. }\end{array} \\ \hline \text { 4.NSO-N. } 6 \text { Determine if a whole number is a multiple of a given one-digit } \\ \text { whole number and if a one-digit number is a factor of a given whole number. }\end{array} \quad \begin{array}{l}\text { 4.OA.4 Find all factor pairs for a whole number in the range 1-100. } \\ \text { Recognize that a whole number is a multiple of each of its factors. Determine } \\ \text { whether a given whole number in the range 1-100 is a multiple of a given } \\ \text { one-digit number. Determine whether a given whole number in the range 1- } \\ \text { 100 is prime or composite. }\end{array} \right\rvert\, \begin{array}{ll}\text { 4.OA.4 Find all factor pairs for a whole number in the range 1-100. }\end{array}\right\}$

denominators.	as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
4.NSO-C. 21 Multiply fractions by whole numbers, using repeated addition and area rectangular models.	4.NF. 4 Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. (Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8,10,12$, and 100.)
	4.NF.4a Understand a fraction a / b as a multiple of $1 / \mathrm{b}$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
	4.NF.4b Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=(n \times a) / b$.)
	4.NF.4c Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
4.NSO-C.23 Multiply and divide money amounts in decimal notation by using whole-number multipliers and divisors.	no alignment
4.NSO-C. 24 Determine the unit cost when given the total cost and number of units.	no alignment
4.NSO-E. 28 Estimate and compute the sum or difference of whole numbers and positive decimals to two places.	no alignment
4.NSO-E. 29 Estimate the answers to calculations involving addition, subtraction, or multiplication; know when approximation or a rounded solution is appropriate and use it to check the reasonableness of answers.	no alignment
Reporting Category: Number Sense and Operations (Priority Standards) (32\%)	
DC Standards:	Aligned Common Core Standards:
4.NSO-F. 9 Demonstrate an understanding of fractions as parts of unit wholes, as parts of a collection, and as locations on a number line.	no alignment
4.NSO-F.10 Know the relationships among halves, fourths, and eighths and	4.NF. 2 Compare two fractions with different numerators and different

among thirds, sixths, and twelfths; compare and order such fractions.
4.NSO-F. 12 Select, use, and explain models to relate common fractions and mixed numbers (e.g., 1/2, 1/3, 1/4, 1/5, 1/8, 1/10, 1/12, and $11 / 2$); find equivalent fractions, mixed numbers, and decimals.
denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.
4.NF. 1 Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
4.NF. 2 Extend understanding of fraction equivalence and ordering. Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. (Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8,10,12$, and 100.)
4.NF.3b Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=8 / 8+$ 8/8 + 1/8.
4.NF.4c Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

4.NF. 5

Understand decimal notation for fractions, and compare decimal fractions. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as $30 / 100$ and add $3 / 10+4 / 100=34 / 100$. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) (Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8,10,12$, and 100.)

4.NF.6,

Understand decimal notation for fractions, and compare decimal fractions. Use decimal notation for fractions with denominators 10 or 100. For

	example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram. (Grade 4 expectations in this domain are limited to fractions with denominators $2,3,4,5,6,8,10,12$, and 100.)
	4.NF.7 Understand decimal notation for fractions, and compare decimal fractions. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. (Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, $5,6,8,10,12$, and 100.)
4.NSO-C. 16 Use concrete objects and visual models to add and subtract fractions where the denominators are equal or when one denominator is a multiple of the other (denominators 2 through 12, and 100).	4.NF. 3 Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
	4.NF. 5 Understand decimal notation for fractions, and compare decimal fractions. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express $3 / 10$ as $30 / 100$ and add $3 / 10+4 / 100=34 / 100$. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) (Grade 4 expectations in this domain are limited to fractions with denominators 2, 3, 4, $5,6,8,10,12$, and 100.)
4.NSO-C. 19 Demonstrate understanding of and ability to use the conventional algorithms for multiplication of up to a three-digit whole number by a two-digit whole number. Multiply three-digit whole numbers by two-digit whole numbers accurately and efficiently.	4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.NSO-C. 20 Demonstrate understanding of and the ability to use the conventional algorithm for division of up to a three-digit whole number with a single-digit divisor (with or without remainders). Divide up to a three-digit whole number with a single-digit divisor accurately and efficiently. Interpret any remainders.	4.NBT. 6 Use place value understanding and properties of operations to perform multi-digit arithmetic. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to $1,000,000$. A range of algorithms may be used.)
	4.OA. 3 Use the four operations with whole numbers to solve problems. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using

	equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
4.NSO-C. 27 Use the relationship between multiplication and division to simplify computations and check results.	4.NBT. 6 Use place value understanding and properties of operations to perform multi-digit arithmetic. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to $1,000,000$. A range of algorithms may be used.)
4.NSO-C. 22 Mentally calculate simple products and quotients up to a threedigit number by a one-digit number (e.g., 400×7, or $320 \div 8$).	4.NBT. 1 Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.
	4.OA. 1 Use the four operations with whole numbers to solve problems. Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
4.NSO-C. 25 Select and use appropriate operations (addition, subtraction, multiplication, and division) to solve problems, including those involving money.	4.OA. 2 Use the four operations with whole numbers to solve problems. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
	4.OA. 3 Use the four operations with whole numbers to solve problems. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
4.NSO-C. 26 Select, use, and explain the commutative, associative, and identity properties of operations on whole numbers in problem situations.	no alignment
Reporting Category: Patterns, Relations, and Algebra (17\%)	
DC Standards:	Aligned Common Core Standards:

4.PRA. 1 Create, describe, extend, and explain geometric and numeric patterns, including multiplication patterns such as $3,30,300$, and 3,000 ; generalize the rule for the pattern and make predictions when given a table of number pairs of a set of data.
4.PRA. 2 Use letters and other symbols (e.g., s, x) as variables in expressions and in equations or inequalities (mathematical sentences that use $=,<$, and $>$).
4.PRA. 3 Use pictures, models, tables, charts, graphs, words, number sentences, and mathematical notations to interpret mathematical relationships.
4.PRA. 4 Solve problems involving proportional relationships, including unit pricing (e.g., 4 apples cost 80 cents, so 1 apple costs 20 cents) and map interpretation (e.g., 1 inch represents 5 miles, so 2 inches represent 10 miles).
4.PRA. 5 Determine how change in one variable relates to a change in a second variable (e.g., input-output tables).

Reporting Category: Geometry (12\%)

DC Standards:

4.G.1 Compare and analyze attributes and other features (e.g., number of sides, faces, corners, right angles, diagonals, and symmetry) of two- and three dimensional geometric shapes. right triangles.
4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3 " and the starting number 1 , generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.
4.OA. 2 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
4.OA. 3 Use the four operations with whole numbers to solve problems. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
no grade 4 alignment
4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
no alignment

Aligned Common Core Standards:

4.G.1 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify
4.G.2 Draw and identify lines and angles, and classify shapes by properties of their lines and angles. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or

	absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
	4.G.3 Draw and identify lines and angles, and classify shapes by properties of their lines and angles. Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
4.G.2 Describe, model, draw, compare, and classify two- and threedimensional shapes (e.g., circles, polygons, parallelograms, trapezoids, cubes, spheres, pyramids, cones, cylinders).	4.G.2 Draw and identify lines and angles, and classify shapes by properties of their lines and angles. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
4.G.3 Know the definitions of a right angle, an acute angle, and an obtuse angle. Understand that $90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° are associated, respectively, with $1 / 4,1 / 2,3 / 4$, and full turns.	4.G.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two dimensional figures.
	4.G.2 Draw and identify lines and angles, and classify shapes by properties of their lines and angles. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
	4.MD. 5 Geometric measurement: understand concepts of angle and measure angles. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:
	4.MD.5a An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
	4.MD.5b An angle that turns through n one-degree angles is said to have an angle measure of n degrees.
4.G.4 Describe and draw intersecting, parallel, and perpendicular lines.	4.G.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two dimensional figures.
	4.G.2 Draw and identify lines and angles, and classify shapes by properties of their lines and angles. Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles
4.G.5 Recognize similar figures (two shapes, R and S, are similar if they are	no alignment

congruent after one of them is shrunk or expanded).	
4.G.6 Describe and apply techniques such as reflections (flips), rotations (turns), and translations (slides) for determining if two shapes are congruent.	no alignment
4.G.7 Predict and validate the results of partitioning, folding, and combining two- and three-dimensional shapes.	no alignment
Reporting Category: Measurement (12\%)	
DC Standards:	Aligned Common Core Standards:
	4.MD.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; I, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the
4.M.2 Carry out simple unit conversions within a system of measurement (e.g., yards to feet or inches; gallons to quarts and pints).	4.MD.2 Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or

graphs (including circle graphs), with the actual set of data.	fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
4.DASP. 3 Compare two data sets represented in two bar graphs, pie graphs, and histograms.	no alignment
4.DASP.4 Represent the possible outcomes for a simple probability situation.	no alignment
4.DASP. 5 List and count the number of possible combinations of objects from 3 sets.	no alignment

Grade 5

Reporting Category: Number Sense and Operations (13\%)

DC Standards:
5.NSO-N. 1 Estimate, round, and manipulate very large (e.g., billions) and very small (e.g., thousandths) numbers; demonstrate an understanding of place value to billions and thousandths.
5.NSO-N. 2 Represent and compare very large (billions) and very small (thousandths) positive numbers in various forms, such as expanded notation without exponents e.g., $9,724=(9 \times 1,000)+(7 \times 100)+(2 \times 10)+4$. 5.NSO-N. 3 Find and position integers, fractions, mixed numbers, and decimals (both positive and negative) on the number line.
5.NSO-N. 4 Compare and order integers (including negative integers) and positive fractions, mixed numbers, decimals, and percents
5.NSO-N. 5 Apply the number theory concepts of common factor, common multiple, and divisibility rules for $2,3,5$, and 10 to the solution of problems Demonstrate an understanding of the concepts of prime and composite numbers.
5.NSO-N. 6 Know the set of prime numbers to 100.
5.NSO-N. 7 Determine the prime factors of all numbers through 100, and write the numbers as the product of their prime factors by using exponents to show multiples of a factor (e.g., $24=2 \times 2 \times 2 \times 3=2^{\wedge} 3 \times 3$).

Aligned Common Core Standards:

5.NBT. 1 Understand the place value system. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
5.NBT. 2 Understand the place value system. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole number exponents to denote powers of 10
5.NBT. 4 Understand the place value system. Use place value understanding to round decimals to any place.
5.NBT. 2 Understand the place value system. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole number exponents to denote powers of 10 .
5.NBT. 3 Understand the place value system. Read, write, and compare decimals to thousandths.

no grade 5 alignment

5.NBT.3b Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.
no alignment
no alignment

5.NSO-F.9 Interpret percents as parts out of 100, use \% notation, and express a part of a whole as a percentage.	no alignment
	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12 . ~(I n ~ g e n e r a l, ~$ a/b $+\mathrm{c} / \mathrm{d}=(\mathrm{ad}+\mathrm{bc}) / \mathrm{bd}$.)
5.NF.2 Use equivalent fractions as a strategy to add and subtract fractions. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect	
result $2 / 5+1 / 2=3 / 7$ by observing that $3 / 7<1 / 2$.	

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { multiplication and division. Illustrate and explain the calculation by using } \\ \text { equations, rectangular arrays, and/or area models. }\end{array} \\ \hline & \begin{array}{l}\text { 5.NBT.7 Perform operations with multi-digit whole numbers and with } \\ \text { decimals to hundredths. Add, subtract, multiply, and divide decimals to } \\ \text { hundredths, using concrete models or drawings and strategies based on } \\ \text { place value, properties of operations, and/or the relationship between } \\ \text { addition and subtraction; relate the strategy to a written method and explain } \\ \text { the reasoning used. }\end{array} \\ \hline & \begin{array}{l}\text { 5.NF. Apply and extend previous understandings of multiplication and } \\ \text { division to multiply and divide fractions. Interpret a fraction as division of the } \\ \text { numerator by the denominator (a/b }=\text { a } \div \text { b). Solve word problems involving }\end{array} \\ \text { division of whole numbers leading to answers in the form of fractions or }\end{array}\right\}$

	understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.)
	5.NBT.5 Perform operations with multi-digit whole numbers and with decimals to hundredths. Fluently multiply multi-digit whole numbers using the standard algorithm.
5.NSO-C.19 Multiply positive decimals with whole numbers.	

fractions, and positive decimals. Estimate products of whole numbers and products of positive decimals with whole numbers. Use a variety of strategies and judge reasonableness of answers
5.NSO-C. 14 Add and subtract positive decimals.
5.NSO-C.16 Demonstrate proficiency with division, including division with positive decimals and long division with multidigit divisors.
5.NSO-C. 20 Demonstrate an understanding of and compute (positive integer) powers of 10 (e.g., 10^2, 10^2); compute examples as repeated multiplication.

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$ by observing that $3 / 7<1 / 2$.
5.NBT. 7 Perform operations with multi-digit whole numbers and with decimals to hundredths. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
5.NBT. 6 Perform operations with multi-digit whole numbers and with decimals to hundredths. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
5.NBT. 7 Perform operations with multi-digit whole numbers and with decimals to hundredths. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

no alignment

Reporting Category: Patterns, Relations, and Algebra (22\%)

DC Standards:

5.PRA. 1 Analyze and determine the rules for extending symbolic, arithmetic, and geometric patterns and progressions (e.g., ABBCCC ...; 1, 5, 9, 13, ...; $3,9,27, \ldots$).
5.PRA. 2 Replace variables with given values, evaluate, and simplify.
5.PRA. 3 Use the properties of equality to solve problems with whole numbers.

Aligned Common Core Standards:

5.OA.3 Analyze patterns and relationships. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0, and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. no alignment
5.PRA. 4 Represent real situations and mathematical relationships with concrete models, tables, graphs, and rules in words and with symbols (e.g., input-output tables).
5.PRA. 5 Interpret and evaluate mathematical expressions that use parentheses; use parentheses to indicate which operation to perform first when writing expressions containing more than two terms and different operations.
5.PRA. 6 Solve problems involving proportional relationships using concrete models, tables, graphs, and paper-pencil methods.
5.PRA. 7 Interpret graphs that represent the relationship between two variables in everyday situations.
5.OA. 2 Write and interpret numerical expressions. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.
5.OA.3 Analyze patterns and relationships. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6 " and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.
5.OA.1 Write and interpret numerical expressions. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
5.OA.2 Write and interpret numerical expressions. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.
5.OA.3 Analyze patterns and relationships. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0, and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.
5.MD. 1 Convert like measurement units within a given measurement system. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step real world problems.
5.OA.3 Analyze patterns and relationships. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6"

	and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. 5.G. 1 Graph points on the coordinate plane to solve real-world and mathematical problems. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x -coordinate, y axis and y-coordinate). 5.G.2 Graph points on the coordinate plane to solve real-world and mathematical problems. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
Reporting Category: Geometry (15\%)	
DC Standards:	Aligned Common Core Standards:
5.G.1 Identify polygons based on their properties, including types of interior angles, perpendicular or parallel sides, and congruence of sides (e.g., squares, rectangles, rhombuses, parallelograms, and trapezoids; isosceles, equilateral, and right triangles).	5.G.3 Classify two-dimensional figures into categories based on their properties. Understand that attributes belonging to a category of twodimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
	5.G.4 Classify two-dimensional figures into categories based on their properties. Classify two-dimensional figures in a hierarchy based on properties.
5.G.2 Identify, describe, and compare special types of three-dimensional shapes (e.g., cubes, prisms, spheres, cones, and pyramids) based on their properties, such as edges and faces.	no alignment
5.G.3 Identify relationships among points, lines, and planes (e.g., intersecting, parallel, perpendicular).	no alignment
5.G.5 Determine if two triangles or two quadrilaterals are congruent by measuring sides or a combination of sides and angles.	no alignment
5.G.6 Predict, describe, and perform transformations on two-dimensional shapes (e.g., translations, rotations, and reflections).	no alignment
5.G.7 Graph points and identify coordinates of points on the Cartesian coordinate plane in the first two quadrants.	5.G. 1 Graph points on the coordinate plane to solve real-world and mathematical problems. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the

	origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, yaxis and y-coordinate).
	5.G.2 Graph points on the coordinate plane to solve real-world and mathematical problems. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
Reporting Category: Measurement (15\%)	
DC Standards:	Aligned Common Core Standards:
5.M. 1 Apply the concepts of perimeter and area to the solution of problems involving triangles and rectangles. Apply formulas where appropriate.	no grade 5 alignment
5.M. 2 Apply formulas for the areas of triangles, rectangles, and parallelograms; recognize that shapes with the same number of sides but different appearances can have the same area.	no alignment
5.M. 3 Solve problems involving proportional relationships and units of measurement.	5.MD. 1 Convert like measurement units within a given measurement system. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step real world problems.
5.M. 4 Identify, measure, and describe circles and the relationships of the radius, diameter, circumference, and area (e.g., $d=2 r$), and use these concepts to solve problems.	no grade 5 alignment
5.M.5 Find volumes and surface areas of rectangular prisms.	5.MD. 3 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
	5.MD. 4 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft, and improvised units.
	5.MD. 5 Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
5.M.7 Identify, measure, describe, classify, and draw various angles and triangles, given sides and the angle between them or given two angles and the side between them.	no alignment
Reporting Category: Data Analysis, Statistics, and Probability (15\%)	

DC Standards:	Aligned Common Core Standards:
5.DASP. 1 Define and apply the concepts of mean to solve problems.	no alignment
5.DASP. 2 Construct, draw conclusions, and make predictions from various	5.MD.2 Represent and interpret data. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in lepresentations of data sets, including tables, line graphs, line plots, circle graphs, and bar graphs (where symbols or scales represent multiple units). beakers, find the ample, given different measurements of liquid in identical amount in all the beakers were redistributed equally.
5.DASP. 3 Predict the probability of outcomes of simple experiments and test the predictions.	no alignment

Grade 6
Reporting Category: Number Sense and Operations (5\%)

DC Standards:
 6.NSO-N. 1 Explain the properties of and compute with rational numbers,

 expressed in a variety of forms.6.NSO-N. 2 Compare and order positive and negative fractions, decimals, and mixed numbers and place them on a number line.
6.NSO-N. 3 Know that numbers and their opposites add to 0 and are on opposite sides and at equal distance from 0 on a number line; know that 0 is an integer that is neither negative nor positive.
6.NSO-N. 4 Represent rational numbers as repeating or terminating decimals when possible, and translate between these representations.
6.NSO-N. 5 Identify and determine common equivalent fractions, mixed numbers, decimals, and percentages.
6.NSO-N. 7 Round whole numbers and decimals to any given place.
6.NSO-N. 8 Select and use appropriate operations to solve problems involving addition, subtraction, multiplication, division, and positive integer exponents with whole numbers and with positive fractions, mixed numbers, decimals, and percentages.
6.NSO-C. 10 Accurately and efficiently add, subtract, multiply, and divide

Aligned Common Core Standards:

no grade 6 alignment

6.NS. 6 Apply and extend previous understandings of numbers to the system of rational numbers. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
6.NS.7a Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 >-7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
6.NS.7b Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.
6.NS. 5 Apply and extend previous understandings of numbers to the system of rational numbers. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6.NS.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
no grade 6 alignment
no alignment
no alignment
no grade 6 alignment
6.NS. 3 Compute fluently with multi-digit numbers and find common factors
(with multidigit divisors) whole numbers and positive decimals.
6.NSO-C. 11 Use prime factorization to add and subtract fractions with like and unlike denominators.
6.NSO-C. 12 Accurately and efficiently add, subtract, multiply, and divide positive fractions (including mixed numbers) with like and unlike denominators. Simplify fractions.
6.NSO-C. 13 Calculate given percentages of quantities, and solve problems involving discounts at sales, interest earned, and tips.
6.NSO-C. 14 Solve simple proportion problems using such methods as unit rate, scaling, finding equivalent fractions, and solving the proportion equation $a / b=c / d$.
6.NSO-C. 15 Apply laws of exponents to multiply whole number powers with like bases.
6.NSO-C. 16 Understand multiplication of a negative number by a positive integer as repeated addition. G.NSO-C.17 Apply the Order
6.NSO-C.17 Apply the Order of Operations for expressions involving addition, subtraction, multiplication, and division with grouping symbols.
6.NSO-E. 18 Estimate results of computations with whole numbers and with positive fractions, mixed numbers, decimals, and percentages. Determine reasonableness of estimates.
and multiples. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

no alignment

6.NS. 1 Apply and extend previous understandings of multiplication and division to divide fractions by fractions. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4 \mathrm{mi}$ and area $1 / 2$ square mi?
6.RP.3c Find a percent of a quantity as a rate per 100 (e.g., 30\% of a quantity means 30/100 times the quantity); solve problems involving finding the whole given a part and the percent.
6.RP. 2 Understand ratio concepts and use ratio reasoning to solve
problems. Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$ (b not equal to zero), and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." (Expectations for unit rates in this grade are limited to non-complex fractions.)
6.RP.3b Solve unit rate problems including those involving unit pricing and constant speed. For example, If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
6.EE. 1 Apply and extend previous understandings of arithmetic to algebraic expressions. Write and evaluate numerical expressions involving wholenumber exponents.
no alignment
no alignment

DC Standards:

6.NSO-N. 3 Know that numbers and their opposites add to 0 and are on opposite sides and at equal distance from 0 on a number line; know that 0 is an integer that is neither negative nor positive.
6.NSO-N. 5 Identify and determine common equivalent fractions, mixed numbers, decimals, and percentages.
6.NSO-C. 8 Select and use appropriate operations to solve problems involving addition, subtraction, multiplication, division, and positive integer exponents with whole numbers and with positive fractions, mixed numbers, decimals, and percentages.
6.NSO-C.10 Accurately and efficiently add, subtract, multiply, and divide (with multidigit divisors) whole numbers and positive decimals.
6.NSO-C. 11 Use prime factorization to add and subtract fractions with like and unlike denominators.
6.NSO-C. 12 Accurately and efficiently add, subtract, multiply, and divide positive fractions (including mixed numbers) with like and unlike denominators. Simplify fractions.
6.NSO-C. 16 Understand multiplication of a negative number by a positive integer as repeated addition.
6.NSO-C.17 Apply the Order of Operations for expressions involving addition, subtraction, multiplication, and division with grouping symbols
no alignment

Aligned Common Core Standards:

6.NS.5 Apply and extend previous understandings of numbers to the system of rational numbers. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
6.NS.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
no alignment
no alignment
6.NS. 3 Compute fluently with multi-digit numbers and find common factors and multiples. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

no alignment

6.NS. 1 Apply and extend previous understandings of multiplication and division to divide fractions by fractions. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4 \mathrm{mi}$ and area $1 / 2$ square mi?
no alignment

Reporting Category: Patterns, Relations, and Algebra (27\%)
DC Standards:
6.PRA. 1 Use the properties of equality to solve problems using letter name
variables.
6.PRA. 2 Write and solve one-step linear equations and check the answers.
6.PRA. 3 Identify and describe relationships between two variables with a constant rate of change (e.g., perimeterside relationship for a square, distance-time graphs, and conversions such as feet to inches). Contrast these with relationships where the rate of change is not constant.
6.PRA. 4 Simplify expressions of the first degree by combining like terms, and evaluate using specific values.
6.PRA. 5 Understand that adding or subtracting the same number to both sides of an equation creates a new equation that has the same truth values.
6.PRA. 6 Understand that multiplying or dividing both sides of an equation by the same nonzero number creates a new equation that has the same truth values.
6.PRA. 7 Distinguish between an algebraic expression and an equation.
6.PRA. 8 Recognize when information given in a table, graph, or formula suggests a proportional or linear relationship.

Aligned Common Core Standards:

no alignment

6.EE. 5 Reason about and solve one-variable equations and inequalities Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6.EE. 7 Reason about and solve one-variable equations and inequalities Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.

no alignment

6.EE. 2 Apply and extend previous understandings of arithmetic to algebraic expressions. Write, read, and evaluate expressions in which letters stand for numbers.
6.EE. 4 Apply and extend previous understandings of arithmetic to algebraic expressions. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.
6.EE. 7 Reason about and solve one-variable equations and inequalities Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.
6.EE. 7 Reason about and solve one-variable equations and inequalities. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. no alignment
6.RP.3a Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
6.EE.9 Represent and analyze quantitative relationships between dependent and independent variables. Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an

	equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.
6.PRA. 9 Produce and interpret graphs that represent the relationship between two variables (x and y) in everyday situations.	no alignment
Reporting Category: Geometry (13\%)	
DC Standards:	Aligned Common Core Standards:
6.G.1 Match three-dimensional objects and their two-dimensional representations (e.g., nets, projections, and perspective drawings).	no grade 6 alignment
6.G.2 Identify angles as vertical, adjacent, complementary, or supplementary; provide descriptions of these terms; and use the properties of complementary and supplementary angles and the sum of the angles of a triangle to solve problems involving an unknown angle.	no grade 6 alignment
6.G.3 Determine if two shapes are congruent by motions or series of motions (e.g., translations, rotations, and reflections); predict the results of transformations on unmarked planes and draw the transformed figure (e.g., predict how tessellations transform under translation, reflection, and rotation).	no grade 6 alignment
6.G.4 Graph points and identify coordinates of points on the Cartesian	6.NS. 6 Apply and extend previous understandings of numbers to the system of rational numbers. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
coordinate plane in all four quadrants.	6.NS. 8 Apply and extend previous understandings of numbers to the system of rational numbers. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
6.G.5 Find the distance between two points on horizontal or vertical number lines.	6.NS.7a Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 >-7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
Reporting Category: Measurement (13\%)	
DC Standards:	Aligned Common Core Standards:
6.M.1 Differentiate between and use appropriate units of measures for two-	6.G.1 Solve real-world and mathematical problems involving area, surface

and three-dimensional objects (i.e., when finding perimeter, area, and volume).
6.M. 2 Find areas of triangles and parallelograms. Recognize that shapes with the same number of sides but different appearances can have the same area.
6.M. 3 Develop strategies to find the area and perimeter of complex shapes (e.g., subdividing them into basic shapes such as quadrilaterals, triangles, circles).
6.M.5 Understand the concept of volume; use the appropriate units in common measuring systems (e.g., cubic inch, cubic centimeter, cubic meter, cubic yard) to compute the volume of rectangular solids, including rectangular prisms.
6.M. 6 Identify, measure, describe, classify, and construct various angles, triangles, and quadrilaterals; measure the interior angles of various polygons.
6.M. 7 Understand the concept of the constant π; know the formulas for the circumference and area of a circle. Use the concepts to solve problems.
6.M. 8 Know and use the formulas for the volumes and surface areas of cubes and rectangular prisms, given the lengths of their sides.
6.M.9 Find the sum of the angles in simple polygons (up to eight sides) with and without measuring the angles.
area, and volume. Find area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Find area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Find area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.
6.G.2 Solve real-world and mathematical problems involving area, surface area, and volume. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=\mathrm{I}$ $\mathrm{w} h$ and $V=b \mathrm{~h}$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

no grade 6 alignment

no alignment

6.G.2 Solve real-world and mathematical problems involving area, surface area, and volume. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=\mathrm{I}$ wh and $\mathrm{V}=\mathrm{b}$ h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.
no alignment

Reporting Category: Data Analysis, Statistics, and Probability (17\%)
DC Standards:
6.DASP. 1 Describe and compare data sets using the concepts of median, mean, mode, maximum and minimum, and range.

Aligned Common Core Standards:

6.SP. 5 Summarize and describe distributions. Summarize numerical data sets in relation to their context, such as by:

	-- a. Reporting the number of observations. -- b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. -- c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data was gathered. -- d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data was gathered.
6.DASP. 3 Construct, label, and interpret stem-and-leaf plots.	no alignment
6.DASP. 4 Use tree diagrams and other models (e.g., lists and tables) to represent possible or actual outcomes of trials.	no alignment
6.DASP. 5 Represent two numerical variables on a scatterplot, and describe any apparent relationship that exists between the two variables (e.g., between time spent on homework and grades in class).	no alignment
6.DASP. 6 Compute probabilities of events from simple experiments with equally likely outcomes (e.g., tossing dice, flipping coins, spinning spinners) by listing all possibilities and finding the fraction that meets given conditions. Analyze the outcomes.	no alignment
6.DASP. 7 Use appropriate ratios between 0 and 1 to represent the probability of the outcome and associate the probability with the likelihood of the event; know that 0 probability means an event will not occur and that a probability of 1 means an event will occur.	no grade 6 alignment

Grade 7
Reporting Category: Number Sense and Operations (15\%)

DC Standards:
 7.NSO-N. 1 Compare, order, estimate, and translate among integers,

fractions, mixed numbers (i.e., rational numbers), decimals, and percents.
7.NSO-N. 2 Know that in decimal form, rational numbers either terminate or eventually repeat; locate rational numbers on the number line; convert between common repeating decimals and fractions.
7.NSO-N. 3 Know the concept of absolute value (e.g., $|-3|=|3|=3$).
7.NSO-N. 4 Represent numbers in scientific notation (positive powers of 10 only), and use that notation in problem situations.
7.NSO-N. 5 Differentiate between rational and irrational numbers (i.e., know that irrational numbers cannot be expressed as the quotient of two integers and cannot be represented by terminating or repeating decimals).
7.NSO-N. 6 Interpret positive whole-number powers as repeated multiplication and negative powers as repeated division or multiplication by the multiplicative inverse. Simplify and evaluate expressions that include exponents.
7.NSO-N. 7 Apply number theory concepts, including prime factorization and relatively prime numbers, to the solution of problems.
7.NSO-N. 9 Know the meaning of a square root of a number and its connection to the square whose area is the number.
7.NSO-C.10 Compute with fractions (including simplification of fractions), integers, decimals, and percentages (including those greater than 100 and less than 1) using the four operations and combinations of the four operations.
7.NSO-C. 11 Demonstrate an understanding of the properties of arithmetic operations on rational numbers (integers, fractions, and terminating decimals); convert terminating decimals into reduced fractions.
7.NSO-C. 12 Select and use appropriate operations - addition, subtraction, multiplication, division - to solve problems with rational numbers and negative integers.

Aligned Common Core Standards:

no alignment

7.NS.2d Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in Os or eventually repeats.
no grade 7 alignment

no alignment

7.NS.2d Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
no grade 7 alignment
no alignment
no alignment

no alignment

7.NS. 2 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
7.NS.2c Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS. 1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
7.NS.1d Apply properties of operations as strategies to add and subtract

	rational numbers.	
	7.NS. 2 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	
	7.NS. 3 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Solve realworld and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)	
7.NSO-C. 15 Take positive and negative rational numbers to positive whole number powers.	no alignment	
7.NSO-C. 16 Apply the laws of exponents to multiply whole number positive and negative powers of whole numbers; divide whole number powers with like bases; explain the inverse relationship between negative and positive exponents.	no grade 7 alignment	
7.NSO-C. 17 Use the inverse relationships of addition/subtraction and multiplication/division to simplify computations and solve problems (e.g., multiplying by $1 / 2$ or 0.5 is the same as dividing by 2).	no alignment	
	7.NS.1a Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.	
7.NSO-C. 18 Use the associative, commutative, and distributive properties; properties of the identity and inverse elements (e.g., $-7+7=0 ; 3 / 4 \times 4 / 3=1$) to solve problems.	7.NS.1b Understand $p+q$ as the number located a distance \|q	from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
	7.NS.2c Apply properties of operations as strategies to multiply and divide rational numbers.	
7.NSO-C. 19 Know and apply the Order of Operations rules to expressions involving powers and roots.	no alignment	
7.NSO-E. 20 Estimate results of computations with rational numbers; determine estimates to a certain stated accuracy.	7.EE. 3 Solve real-life and mathematical problems using numerical and algebraic expressions and equations. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations as strategies to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If	

	you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
Reporting Category: Number Sense and Operations (Priority Standards) (15\%)	
DC Standards:	Aligned Common Core Standards:
7.NSO-N. 8 Express ratios in several ways (e.g., 3 cups to 5 people; 3:5; $3 / 5$); recognize and find equivalent ratios.	no grade 7 alignment
7.NSO-C.13 Calculate the percentage increase and decrease of a quantity.	no alignment
7.NSO-C. 14 Use ratios and proportions in the solution of problems involving unit rates, scale drawings, and reading of maps.	7.RP. 1 Analyze proportional relationships and use them to solve real-world and mathematical problems. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction (1/2)/(1/4) miles per hour, equivalently 2 miles per hour.
	7.RP.2 Analyze proportional relationships and use them to solve real-world and mathematical problems. Recognize and represent proportional relationships between quantities.
Reporting Category: Patterns, Relations, and Algebra (22\%)	
DC Standards:	Aligned Common Core Standards:
7.PRA. 1 Extend, represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic expressions. Include arithmetic and geometric progressions (e.g., compounding).	7.RP.2c Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$.
7.PRA. 2 Evaluate simple algebraic expressions for given variable values (e.g., $3 a^{\wedge} 2-b$ for $a=3$ and $b=7$).	no grade 7 alignment
7.PRA. 3 Use the correct order of operations to evaluate expressions (e.g., $3(2 x)=5) .$	no grade 7 alignment
7.PRA. 4 Create and use symbolic expressions for linear relationships, and relate them to verbal and graphical representations.	no alignment
7.PRA. 5 Use variables and appropriate operations to write an expression, equation, or inequality that represents a verbal description (e.g., 3 less than a number, $1 / 2$ as large as area A).	7.EE. 4 Solve real-life and mathematical problems using numerical and algebraic expressions and equations. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
7.PRA. 6 Write and solve two-step linear equations and check the answers.	no grade 7 alignment
7.PRA. 7 Identify, describe, and analyze linear relationships between two variables. Compare positive rate of change (e.g., $y=3 x+1$) to negative rate of change (e.g., $y=-3 x+1$).	no alignment
7.PRA. 9 Simplify numerical expressions by applying properties of rational numbers (e.g., identity, inverse) and operations of rational numbers	7.NS.2a Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of

(distributive, associative, commutative); justify the process used.
7.PRA. 10 Use algebraic terminology including, but not limited to, variable, equation, term, coefficient, inequality, expression, and constant.
7.PRA. 11 Plot the values of quantities whose ratios are always the same (e.g., cost to the number of an item, feet to inches, circumference to diameter of a circle). Fit a line to the plot and understand that the slope of the line equals the quantities.
operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
7.NS.2c Apply properties of operations as strategies to multiply and divide rational numbers.

no grade 7 alignment

7.RP.2a Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. 7.RP.2b Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

Reporting Category: Patterns, Relations, and Algebra (Priority Standards) (3\%)			
DC Standards:	Aligned Common Core Standards:		
7.PRA.8 Use linear equations to model and analyze problems involving proportional relationships.	no grade 7 alignment	,	Reporting Category: Geometry (13\%)
:---			
DC Standards:			
7.G.1 Identify three-dimensional figures (e.g., prisms, pyramids) by their physical appearance, distinguishing attributes, and spatial relationships such as parallel faces.			
7.G.2 Demonstrate an understanding of conditions that indicate two geometrical figures are congruent and what congruence means about the relationships between the sides and angles of the two figures.			
7.G.3 Classify figures in terms of congruence and similarity, and apply these relationships to the solution of problems.			
7.G.4 Know and understand the Pythagorean theorem and its converse. Apply the theorem to the solution of problems, including using it to find the length of the missing side of a right triangle, and perimeter, area, and volume problems.			

7.G. 6 Understand and use coordinate graphs to plot simple figures; determine lengths and areas related to them; and determine their image under translations, reflections, and rotations (e.g., predict how tessellations transform under translations, reflections, and rotations).

Reporting Category:

no grade 7 alignment

Measurement (2\%)

DC Standards:

7.M. 1 Select, convert (between systems of measurement), and use appropriate units of measurement or scale.
7.M. 2 Demonstrate an understanding of the concepts and apply formulas and procedures for determining measures, including those of area and perimeter/circumference of parallelograms, trapezoids, and circles. Given the formulas, determine the surface area and volume of rectangular prisms and cylinders.
7.M. 5 Use ratio and proportion, including scale factors, in the solution of problems.

Aligned Common Core Standards:

no alignment

7.G.6 Solve real-life and mathematical problems involving angle measure, area, surface area, and volume. Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
7.RP. 2 Analyze proportional relationships and use them to solve real-world and mathematical problems. Recognize and represent proportional relationships between quantities.

Reporting Category: Measurement (Priority Standards) (15\%)

DC Standards:

7.M. 3 Demonstrate an understanding that rate is a measure of one quantity per unit value of another quantity; use models, graphs, and formulas to solve simple problems involving rates (e.g., velocity and density); check the units of the solutions; use dimensional analysis to check the reasonableness of the answer.
7.M. 4 Construct and read drawings and models made to scale.

Aligned Common Core Standards:

n

no alignment

7.G.1 Draw, construct, and describe geometrical figures and describe the relationships between them. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

Reporting Category: Data Analysis, Statistics, and Probability (15\%)

DC Standards:

Aligned Common Core Standards:

7.DASP. 2 Select, create, interpret, and use various tabular and graphical representations of data (e.g., circle graphs, Venn diagrams, stem-and-leaf plots, histograms, tables, and charts).
7.DASP. 3 Describe the characteristics and limitations of a data sample. Identify different ways of selecting a sample (e.g., convenience sampling, responses to a survey, random sampling).

no grade 7 alignment

7.SP. 1 Use random sampling to draw inferences about a population.

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

7.DASP. 4 Use tree diagrams, tables, organized lists, and area models to compute probabilities for simple compound events (e.g., multiple coin tosses or rolls of dice).	7.SP.6 Investigate chance processes and develop, use, and evaluate probability models. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
	7.SP.7b Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
	7.SP.8 Investigate chance processes and develop, use, and evaluate probability models. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
	7.SP.8b Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.
7.DASP. 5 Understand that the probability of either of two disjoint events occurring is the sum of the two individual probabilities and that the probability of one event following another, in independent trials, is the product of the two probabilities.	no alignment

Grade 8
Reporting Category: Number Sense and Operations (25\%)

DC Standards:
 8.NSO-N. 1 Explain the properties of and compute with real numbers

 expressed in a variety of forms.8.NSO-N. 2 Know that every rational number is either a terminating or repeating decimal and that every irrational number is a nonrepeating decimal.
8.NSO-N. 3 Know that the absolute value is the distance of the number from

0 ; determine the absolute value and additive inverse of real numbers; determine the absolute value of rational numbers.
8.NSO-N. 4 Read, write, and compare rational numbers in scientific notation (positive and negative powers of 10), and use them in calculations and problem situations.
8.NSO-N. 5 Define, compare, order, and apply frequently used irrational numbers, such as $\sqrt{ } 2$ and π (e.g., show that if π is known to be irrational, then 3π and $\pi / 3$ also are irrational).
8.NSO-N. 7 Demonstrate an understanding of the properties of arithmetic operations on rational numbers.
8.NSO-C. 8 Calculate weighted averages such as course grades, consumer price indexes, and sports ratings.
8.NSO-C. 10 Solve problems involving derived quantities such as density, velocity, and weighted averages.
8.NSO-C. 11 Solve problems that involve markups, commissions, profits, and simple and compound interest.
8.NSO-C.12 Apply the rules of powers and roots to the solution of problems.
no alignment
no alignment

Aligned Common Core Standards:

no alignment

8.NS. 1 Know that there are numbers that are not rational, and approximate them by rational numbers. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

no grade 8 alignment

8.EE. 3 Work with radicals and integer exponents. Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as $3 \times 10^{\wedge} 8$ and the population of the world as $7 \times 10^{\wedge} 9$, and determine that the world population is more than 20 times larger.
8.NS. 2 Know that there are numbers that are not rational, and approximate them by rational numbers. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., $\pi^{\wedge} 2$). For example, by truncating the decimal expansion of $\sqrt{2}$ (square root of 2), show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.

no grade 8 alignment

no grade 8 alignment
8.EE. 2 Work with radicals and integer exponents. Use square root and cube root symbols to represent solutions to equations of the form $x^{\wedge} 2=p$ and $x^{\wedge} 3$ $=p$, where p is a positive rational number. Evaluate square roots of small
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { perfect squares and cube roots of small perfect cubes. Know that } \sqrt{ } 2 \text { is } \\ \text { irrational. }\end{array} \\ \hline \begin{array}{l}\text { 8.NSO-C.13 Use the inverse relationship between squaring and finding the } \\ \text { square root of a perfect square integer to solve problems. }\end{array} & \begin{array}{l}\text { no alignment }\end{array} \\ \hline & \begin{array}{l}\text { 8.EE.4 Work with radicals and integer exponents. Perform operations with } \\ \text { numbers expressed in scientific notation, including problems where both } \\ \text { decimal and scientific notation are used. Use scientific notation and choose } \\ \text { units of appropriate size for measurements of very large or very small } \\ \text { quantities (e.g., use millimeters per year for seafloor spreading). Interpret }\end{array} \\ \text { scientific notation that has been generated by technology. }\end{array}\right\}$

	relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
	8.F. 5 Use functions to model relationships between quantities. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
8.PRA. 5 Identify the roles of variables within an equation (e.g., $y=m x+b$, expressing y as a function of x with parameters m and b).	8.F. 3 Define, evaluate, and compare functions. Interpret the equation $y=m x$ $+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{\wedge} 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.
	8.EE. 6 Understand the connections between proportional relationships, lines, and linear equations. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical $a x i s ~ a t ~ b . ~$
	8.F. 4 Use functions to model relationships between quantities. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.PRA. 6 Distinguish between numerical and algebraic expressions, equations, and inequalities.	no grade 8 alignment
8.PRA. 9 Graph a linear equation using ordered pairs; identify and represent the graphs of linear functions.	8.F. 3 Define, evaluate, and compare functions. Interpret the equation $y=m x$ $+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{\wedge} 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.
Reporting Category: Geometry (12\%)	
DC Standards:	Aligned Common Core Standards:
8.G.1 Analyze, apply, and explain the relationship between the number of sides and the sums of the interior and exterior angle measures of polygons.	no alignment

8.G.2 Demonstrate an understanding of the relationships of angles formed by intersecting lines, including parallel lines cut by a transversal.
8.G. 3 Demonstrate an understanding of conditions that indicate two triangles are similar: the corresponding angles are congruent (AA similarity); the ratios of two pairs of corresponding sides are equal and the included angles are congruent (SAS similarity); ratios of all pairs of corresponding sides are equal (SSS similarity).
8.G.4 Use a straightedge, compass, protractor, or other tool to formulate and test conjectures and to draw geometric figures.
8.G.5 Apply spatial reasoning by recognizing and drawing two-dimensional representations of three-dimensional objects (e.g., nets, projections, and perspective drawings of cylinders, prisms, and cones).
8.G.6 Find the distance between two points on the coordinate plane using the distance formula; find the midpoint of the line segment; recognize that the distance formula is an application of the Pythagorean theorem.
8.G.5 Understand congruence and similarity using physical models, transparencies, or geometry software. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the three angles appear to form a line, and give an argument in terms of transversals why this is so.
8.G.5 Understand congruence and similarity using physical models, transparencies, or geometry software. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the three angles appear to form a line, and give an argument in terms of transversals why this is so.

no grade 8 alignment

no grade 8 alignment
8.G.8 Understand and apply the Pythagorean Theorem. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Reporting Category: Measurement (13\%)

DC Standards:

8.M. 2 Understand the concept of surface area and volume; given the formulas, determine the surface area and volume of rectangular prisms, cylinders, and spheres.
8.M. 3 Use a straightedge, compass, protractor, or other tools to formulate and test conjectures and to draw geometric figures.

Aligned Common Core Standards:

8.G.9 Solve real-world and mathematical problems involving volume of cylinders, cones and spheres. Know the formulas for the volume of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
no alignment
8.M. 4 Solve problems about similar figures and scale drawings. Understand that when the lengths of all dimensions of an object are multiplied by a scale factor, the surface area is multiplied by the square of the scale factor and the volume is multiplied by the cube of the scale factor.
8.M. 5 Understand and use the fact that when two polygons or circles are similar with scale factor of r, their areas are related by a factor of $r^{\wedge} 2$.
8.M. 6 Use proportions to express relationships between corresponding parts of similar figures.

Reporting Category: Data Analysis, Statistics, and Probability (15\%)

DC Standards:	Aligned Common Core Standards:			
8.DASP. 1 Revisit measures of central tendency (mean, median, and mode) and spread (range) that represent a set of data and then observe the change in each when an "outlier" is adjoined to the data set or removed from it. Use these notions to compare different sets of data and explain how each can be useful in a different way to summarize social phenomena such as price levels, clothing sizes, and athletic performances.				
	no grade 8 alignment	$	$	8.SP.1 Investigate patterns of association in bivariate data. Construct and
:---				
interpret scatter plots for bivariate measurement data to investigate patterns				
of association between two quantities. Describe patterns such as clustering,				
outliers, positive or negative association, linear association, and nonlinear				
association.				
representations of data (e.g., scatterplots, box-and-whisker plots).				

Grade 10

Reporting Category: Number Sense and Operations (18\%)

DC Standards:

AI.N. 1 Use the properties of operations on real numbers, including the associative, commutative, identity, and distributive properties, and use them to simplify calculations.
Al.N. 2 Simplify numerical expressions, including those involving integer exponents or the absolute value (e.g., $3\left(2^{\wedge} 4-1\right)=45$, $4|3-5|+6=14$); apply such simplifications in the solution of problems.
Al.N. 3 Calculate and apply ratios,
proportions, rates, and percentages to solve a range of consumer and practical problems.
AI.N. 4 Use estimation to judge the reasonableness of results of computations and of solutions to problems involving real numbers, including approximate error in measurement and the approximate value of square roots. (Reminder: This is without the use of calculators.)

AI.N. 5 Understand the concept of nth roots of positive real numbers and of raising a positive real number to a fractional power Use the rules of exponents also for fractional exponents.

Al.N. 6 Apply the set operations of union and intersection and the concept of complement, universal set, and disjoint sets, and use them to solve problems, including those involving Venn diagrams.

Aligned Common Core Standards:

9-12.N.RN. 3 Use properties of rational and irrational numbers. Explain why the sum or product of rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.
9-12.A.SSE. 1 Interpret the structure of expressions. Interpret expressions that represent a quantity in terms of its context.*

9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15^{\wedge} t$ can be rewritten as $\left[1.15^{\wedge}(1 / 12)\right]^{\wedge}(12 t) \approx 1.012^{\wedge}(12 t)$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*

9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.*
9-12.F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context.

9-12.F.LE. 5 Construct and compare linear, quadratic, and exponential models and solve problems. Interpret the parameters in a linear or exponential function in terms of a context.*
9-12.N.RN. 1 Extend the properties of exponents to rational exponents. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{\wedge}(1 / 3)$ to be the cube root of 5 because we want $\left[5^{\wedge}(1 / 3)\right]^{\wedge} 3=5^{\wedge}[(1 / 3) \times 3]$ to hold, so $\left[5^{\wedge}(1 / 3)\right]^{\wedge} 3$ must equal 5 .
9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15^{\wedge} \mathrm{t}$ can be rewritten as $\left[1.15^{\wedge}(1 / 12)\right]^{\wedge}(12 \mathrm{t}) \approx 1.012^{\wedge}(12 \mathrm{t})$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*

DC Standards:
Reporting Category: Patterns, Relations, and Algebra (Priority Standards) (35\%) Aligned Common Core Standards:

Al.P. 1 Recognize, describe, and extend patterns governed by a linear, quadratic, or exponential functional relationship or by a simple iterative process (e.g., the Fibonacci sequence)

AI.P. 3 Demonstrate an understanding of relations and functions. Identify the domain, range, and dependent and independent variables of functions.

9-12.F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context. 9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
9-12.A.CED. 4 Create equations that describe numbers or relationship. Rearrange formulas to highlight a
quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=$ IR to highlight resistance R.*
9-12.F.IF. 3 Understand the concept of a function and use function notation. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$ (n is greater than or equal to 1).
9-12.A.APR. 5 Use polynomial identities to solve problems. Know and apply that the Binomial Theorem gives the expansion of $(x+y)^{\wedge} n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. (The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.)
9-12.F.IF. 2 Understand the concept of a function and use function notation. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. 9-12.F.IF. 1 Understand the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
9-12.F.BF. 1 Build a function that models a relationship between two quantities. Write a function that describes a relationship between two quantities.*
9-12.A.CED. 1 Create equations that describe numbers or relationship. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
9-12.A.CED. 4 Create equations that describe numbers or relationship. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=$ IR to highlight resistance R.*
9-12.A.REI. 2 Understand solving equations as a process of reasoning and explain the reasoning. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
9-12.A.REI. 11 Represent and solve equations and inequalities graphically. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
9-12.F.IF. 4 Interpret functions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include:
slope and x - and y-intercepts from its graph or from a linear equation that represents the line.

AI.P. 13 Solve equations and inequalities, including those involving absolute value of linear expressions (e.g., $|x-2|>5$), and apply to the solution of problems.
intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*
9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*
9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.*
9-12.A.CED. 4 Create equations that describe numbers or relationship. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=$ IR to highlight resistance R.*
9-12.F.IF. 6 Interpret functions that arise in applications in terms of the context. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
9-12.A.REI. 7 Solve systems of equations. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{\wedge} 2+y^{\wedge} 2=3$.
9-12.A.REI. 10 Represent and solve equations and inequalities graphically. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
9-12.A.REI. 12 Represent and solve equations and inequalities graphically. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes
9-12.A.SSE. 3 Write expressions in equivalent forms to solve problems. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
9-12.A.CED. 1 Create equations that describe numbers or relationship. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.*
9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
9-12.A.REI. 1 Understand solving equations as a process of reasoning and explain the reasoning. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
9-12.A.REI. 2 Understand solving equations as a process of reasoning and explain the reasoning. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
9-12.A.REI. 3 Solve equations and inequalities in one variable. Solve linear equations and inequalities in one

AI.P. 14 Solve everyday problems (e.g., compound interest and direct and inverse variation problems) that can be modeled using linear or quadratic functions. Apply appropriate graphical or symbolic methods to the solution.

AI.P. 15 Solve everyday problems (e.g., mixture, rate, and work problems) that can be modeled using systems of linear equations or inequalities. Apply algebraic
variable, including equations with coefficients represented by letters
9-12.A.REI. 4 Solve equations and inequalities in one variable. Solve quadratic equations in one variable.
9-12.A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^{\wedge} n$ as the product of P and a factor not depending on P.*
9-12.F.IF. 5 Interpret functions that arise in applications in terms of the context. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
9-12.F.BF. 1 Build a function that models a relationship between two quantities. Write a function that describes a relationship between two quantities.*
9-12.F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context.
9-12.F.LE. 1 Construct and compare linear, quadratic, and exponential models and solve problems.
Distinguish between situations that can be modeled with linear functions and with exponential functions.*
9-12.F.LE. 2 Construct and compare linear, quadratic, and exponential models and solve problems. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).*
9-12.F.LE. 5 Construct and compare linear, quadratic, and exponential models and solve problems. Interpret the parameters in a linear or exponential function in terms of a context.*
9-12.A.REI. 1 Understand solving equations as a process of reasoning and explain the reasoning. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
9-12.A.REI. 2 Understand solving equations as a process of reasoning and explain the reasoning. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
9-12.A.REI. 3 Solve equations and inequalities in one variable. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{\wedge} 2=q$ that has the same solutions. Derive the quadratic formula from this form. 9-12.A.REI.4b Solve quadratic equations by inspection (e.g., for $x^{\wedge} 2=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a $\pm \mathrm{bi}$ for real numbers a and b .
9-12.A.SSE.3c Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15^{\wedge} t$ can be rewritten as $\left[1.15^{\wedge}(1 / 12)\right]^{\wedge}(12 \mathrm{t}) \approx 1.012^{\wedge}(12 \mathrm{t})$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.*
9-12.N.Q.2 Reason quantitatively and use units to solve problems. Define appropriate quantities for the purpose of descriptive modeling.*
9-12.F.IF. 5 Interpret functions that arise in applications in terms of the context. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the
and graphical methods to the solution

AI.P. 8 Add, subtract, and multiply polynomials with emphasis on 1st- and 2nddegree polynomials.

AI.P. 9 Demonstrate facility in symbolic manipulation of polynomial and rational expressions by rearranging and collecting terms, factoring [e.g., $a^{\wedge} 2-b^{\wedge} 2=(a+b)(a-$ b), $x^{\wedge} 2+10 x+21=(x+3)(x+7), 5 x^{\wedge} 4+$ $\left.10 x^{\wedge} 3-5 x^{\wedge} 2=5 x^{\wedge} 2\left(x^{\wedge} 2+2 x-1\right)\right]$, identifying and canceling common factors in
function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
9-12.F.BF. 1 Build a function that models a relationship between two quantities. Write a function that describes a relationship between two quantities.*
9-12.F.LE. 2 Construct and compare linear, quadratic, and exponential models and solve problems. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).*
9-12.F.LE. 5 Construct and compare linear, quadratic, and exponential models and solve problems. Interpret the parameters in a linear or exponential function in terms of a context.*
9-12.A.REI. 3 Solve equations and inequalities in one variable. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
9-12.A.REI. 5 Solve systems of equations. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
9-12.A.REI. 6 Solve systems of equations. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
9-12.A.REI. 12 Represent and solve equations and inequalities graphically. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
9-12.A.APR. 1 Perform arithmetic operations on polynomials. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
9-12.A.APR. 4 Use polynomial identities to solve problems. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 2=\left(x^{\wedge} 2-y^{\wedge} 2\right)^{\wedge} 2+(2 x y)^{\wedge} 2$ can be used to generate Pythagorean triples.
9-12.A.APR. 5 Use polynomial identities to solve problems. Know and apply that the Binomial Theorem gives the expansion of $(x+y)^{\wedge} n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. (The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.)
9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{\wedge} 2=q$ that has the same solutions. Derive the quadratic formula from this form 9-12.A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+r)^{\wedge} \mathrm{n}$ as the product of P and a factor not depending on P .*
9-12.A.SSE. 2 Interpret the structure of expressions. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{\wedge} 4-y^{\wedge} 4$ as $\left(x^{\wedge} 2\right)^{\wedge} 2-\left(y^{\wedge} 2\right)^{\wedge} 2$, thus recognizing it as a difference of squares that can be factored as ($\left.x^{\wedge} 2-y^{\wedge} 2\right)\left(x^{\wedge} 2+y^{\wedge} 2\right)$.
9-12.A.SSE. 3 Write expressions in equivalent forms to solve problems. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
rational expressions, and applying the properties of positive integer exponents.

9-12.A.APR. 1 Perform arithmetic operations on polynomials. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
9-12.A.APR. 3 Understand the relationship between zeros and factors of polynomials. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
9-12.A.APR. 4 Use polynomial identities to solve problems. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 2=\left(x^{\wedge} 2-y^{\wedge} 2\right)^{\wedge} 2+(2 x y)^{\wedge} 2$ can be used to generate Pythagorean triples.
9-12.A.APR. 7 Rewrite rational expressions. Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
9-12.A.REI. 11 Represent and solve equations and inequalities graphically. Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*

Reporting Category: Geometry (15\%)

DC Standards:

G.G. 2 Recognize special types of polygons (e.g., isosceles triangles, parallelograms, and rhombuses).
G.G. 3 Apply properties of sides, diagonals, and angles in special polygons; identify their parts and special segments (e.g., altitudes, midsegments); determine interior angles for regular polygons.
G.G. 6 Apply the triangle inequality and other inequalities associated with triangles (e.g., the longest side is opposite the greatest angle) to prove theorems and to solve problems.
G.G. 7 Use properties and theorems about congruent and similar figures and about perpendicular and parallel lines to solve problems.

Aligned Common Core Standards:
9-12.G.CO.3 Experiment with transformations in the plane. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

9-12.G.CO.11 Prove geometric theorems. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
no alignment
9-12.G.CO. 11 Prove geometric theorems. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
9-12.G.CO.9 Prove geometric theorems. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
G.G. 8 Write simple proofs of theorems in geometric situations, such as theorems about triangles, congruent and similar figures, and perpendicular and parallel lines (e.g., the longest side is opposite the greatest angle, two lines parallel to a third are parallel to each other; perpendicular bisectors of line segments are the set of all points equidistant from the two end points).
G.G. 11 Draw congruent and similar figures using a compass, straightedge, or protractor. Justify the constructions by logical argument.
G.G. 12 Apply congruence and similarity correspondences (e.g., $\triangle A B C \cong \triangle X Y Z$) and properties of the figures to find missing

9-12.G.SRT. 2 Understand similarity in terms of similarity transformations. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
9-12.G.SRT. 4 Prove theorems involving similarity. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
9-12.G.SRT. 5 Prove theorems involving similarity. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
9-12.G.GPE. 5 Use coordinates to prove simple geometric theorems algebraically. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
9-12.G.MG. 3 Apply geometric concepts in modeling situations. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*
9-12.G.CO.9 Prove geometric theorems. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
9-12.G.SRT. 4 Prove theorems involving similarity. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
9-12.G.SRT. 5 Prove theorems involving similarity. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
9-12.G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{ } 3)$ lies on the circle centered at the origin and containing the point $(0,2)$.
9-12.G.CO.12 Make geometric constructions. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
9-12.G.CO.13 Make geometric constructions. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
9-12.G.CO.5 Experiment with transformations in the plane. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
9-12.G.CO. 8 Understand congruence in terms of rigid motions. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. 9-12.G.SRT. 2 Understand similarity in terms of similarity transformations. Given two figures, use the
parts of geometric figures, and provide logical justification.
G.G. 13 Apply properties of angles, parallel lines, arcs, radii, chords, tangents, and secants to solve problems.
G.G. 14 Solve simple triangle problems using the triangle angle sum property and/or the Pythagorean theorem; study and understand more than one proof of this theorem.
definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
9-12.G.CO. 7 Understand congruence in terms of rigid motions. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
9-12.G.SRT. 5 Prove theorems involving similarity. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
9-12.G.CO.6 Understand congruence in terms of rigid motions. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
9-12.G.SRT. 1 Understand similarity in terms of similarity transformations. Verify experimentally the properties of dilations given by a center and a scale factor:
-- a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
-- b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
$\mathbf{9 - 1 2 . G . S R T} 3$ Understand similarity in terms of similarity transformations. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.
9-12.G.SRT. 4 Prove theorems involving similarity. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
9-12.G.C. 2 Understand and apply theorems about circles. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
9-12.G.C. 4 Understand and apply theorems about circles. Construct a tangent line from a point outside a given circle to the circle.
9-12.G.CO.4 Experiment with transformations in the plane. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
9-12.G.C. 1 Understand and apply theorems about circles. Prove that all circles are similar.
9-12.G.C. 3 Understand and apply theorems about circles. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
9-12.G.CO. 10 Prove geometric theorems. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
9-12.G.SRT. 4 Prove theorems involving similarity. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
9-12.G.SRT. 8 Define trigonometric ratios and solve problems involving right triangles. Use trigonometric

ratios and the Pythagorean Theorem to solve right triangles in applied problems.
9-12.G.SRT. 7 Define trigonometric ratios and solve problems involving right triangles. Explain and use the relationship between the sine and cosine of complementary angles.
9-12.F.TF. 3
9-12.G.CO. 10 Prove geometric theorems. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
9-12.G.SRT. 8 Define trigonometric ratios and solve problems involving right triangles. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
9-12.G.SRT. 9 Apply trigonometry to general triangles. Derive the formula $A=(1 / 2) a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
9-12.G.SRT. 6 Define trigonometric ratios and solve problems involving right triangles. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
9-12.F.TF. 3 Extend the domain of trigonometric functions using the unit circle. Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of their values for x where x is any real number.
9-12.G.SRT. 7 Define trigonometric ratios and solve problems involving right triangles. Explain and use the relationship between the sine and cosine of complementary angles.
9-12.G.SRT. 9 Apply trigonometry to general triangles. Derive the formula $A=(1 / 2) a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*
9-12.G.GPE. 6 Use coordinates to prove simple geometric theorems algebraically. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
9-12.G.C. 4 Understand and apply theorems about circles. Construct a tangent line from a point outside a given circle to the circle.
9-12.G.GPE. 5 Use coordinates to prove simple geometric theorems algebraically. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
9-12.A.REI. 10 Represent and solve equations and inequalities graphically. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
9-12.G.GPE. 7 Use coordinates to prove simple geometric theorems algebraically. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.* 9-12.G.GPE. 6 Use coordinates to prove simple geometric theorems algebraically. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.
9-12.G.CO. 1 Experiment with transformations in the plane. Know precise definitions of angle, circle,
G.G. 19 Find linear equations that represent lines either perpendicular or parallel to a given line and through a point (e.g., by using the point-slope form of the equation).
G.G. 20 Draw the results and interpret transformations on figures in the coordinate plane such as translations, reflections, rotations, scale factors, and the results of successive transformations. Apply transformations to the solution of problems.
perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
9-12.G.SRT. 1 Understand similarity in terms of similarity transformations. Verify experimentally the properties of dilations given by a center and a scale factor:
-- a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
-- b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor
9-12.G.C. 4 Understand and apply theorems about circles. Construct a tangent line from a point outside a given circle to the circle.
9-12.G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0,2)$.
9-12.G.GPE. 5 Use coordinates to prove simple geometric theorems algebraically. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
9-12.G.GPE. 5 Use coordinates to prove simple geometric theorems algebraically. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
9-12.G.SRT. 9 Apply trigonometry to general triangles. Derive the formula $A=(1 / 2) a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.
9-12.A.CED. 2 Create equations that describe numbers or relationship. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*
9-12.G.CO.5 Experiment with transformations in the plane. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
9-12.G.SRT. 1 Understand similarity in terms of similarity transformations. Verify experimentally the properties of dilations given by a center and a scale factor:
-- a. A dilation takes a line not passing through the center of the dilation to a parallel line and leaves a line passing through the center unchanged.
-- b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
9-12.G.CO.4 Experiment with transformations in the plane. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
9-12.G.CO.1 Experiment with transformations in the plane. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.
9-12.G.CO.2 Experiment with transformations in the plane. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

	9-12.G.CO.3 Experiment with transformations in the plane. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
	9-12.G.CO.6 Understand congruence in terms of rigid motions. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
G.G. 21 Demonstrate the ability to visualize solid objects and recognize their projections, cross sections, and graph points in 3-D.	9-12.G.MG. 3 Apply geometric concepts in modeling situations. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*
	9-12.G.MG. 2 Apply geometric concepts in modeling situations. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
Reporting Category: Measurement (12\%)	
DC Standards:	Aligned Common Core Standards:
G.G. 23 Find and use measures of lateral areas, surface areas, and volumes of prisms, pyramids, spheres, cylinders, and cones, and relate these measures to each other using formulas.	9-12.G.GMD. 3 Explain volume formulas and use them to solve problems. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*
	9-12.G.GMD. 1 Explain volume formulas and use them to solve problems. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
	9-12.G.GMD. 2 Explain volume formulas and use them to solve problems. Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
	9-12.G.MG. 2 Apply geometric concepts in modeling situations. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
	9-12.G.MG. 1 Apply geometric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
G.G. 24 Relate changes in the measurement (including units) of one attribute of an object to changes in other attributes.	9-12.N.Q. 1 Reason quantitatively and use units to solve problems. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*
	9-12.F.IF. 6 Interpret functions that arise in applications in terms of the context. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*
	9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.*
	9-12.G.GMD. 1 Explain volume formulas and use them to solve problems. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
	9-12.G.MG. 2 Apply geometric concepts in modeling situations. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).*
G.G. 25 Describe the effects of approximate error in measurement and rounding on measurements and on computed values	9-12.N.Q. 3 Reason quantitatively and use units to solve problems. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.*
	9-12.G.GMD. 1 Explain volume formulas and use them to solve problems. Give an informal argument for the

from measurements.
G.G. 26 Use dimensional analysis for unit conversion and to confirm that expressions and equations make sense.
formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
9-12.G.C. 5 Find arc lengths and areas of sectors of circles. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
9-12.G.MG. 1 Apply geometric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*
9-12.N.Q. 1 Reason quantitatively and use units to solve problems. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.*

DC Standards:

AI.D. 1 Select, create, and interpret an appropriate graphical representation (e.g., scatter plot, table, stem-and-leaf plots, circle graph, line graph, and line plot) for a set of data, and use appropriate statistics (e.g., mean, median, range, and mode) to communicate information about the data. Use these notions to compare different sets of data.

Reporting Category: Data Analysis, Statistics, and Probability (20\%)
Aligned Common Core Standards:
9-12.N.Q. 2 Reason quantitatively and use units to solve problems. Define appropriate quantities for the purpose of descriptive modeling.*
9-12.F.LE. 5 Construct and compare linear, quadratic, and exponential models and solve problems. Interpret the parameters in a linear or exponential function in terms of a context.*
9-12.S.ID. 2 Summarize, represent, and interpret data on a single count or measurement variable. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*
9-12.S.ID. 1 Summarize, represent, and interpret data on a single count or measurement variable. Represent data with plots on the real number line (dot plots, histograms, and box plots).*

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem.
Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or

Source: Common Core State Standards, http://www.corestandards.org/the-standards/mathematics/introduction/ standards-for-mathematical-practice/
use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x 2+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y) 2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the Source: Common Core State Standards, http://www.corestandards.org/the-standards/mathematics/introduction/ standards-for-mathematical-practice/
calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)(x 2+x+1)$, and $(x-1)(x 3+x 2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

